Characteristics of ductile mode chip formation in nanoscale cutting of brittle materials
by Xiaoping Li, Minbo Cai, Kui Liu, Mustafizur Rahman
International Journal of Abrasive Technology (IJAT), Vol. 1, No. 1, 2007

Abstract: In this paper, a comprehensive study of the machining characteristics of nanoscale ductile mode cutting of brittle materials is presented, covering the critical cutting conditions for the ductile mode of chip formation, cutting conditions for crack initiation in the chip formation zone, effect of the cutting edge radius, machined workpiece surface and subsurface damage, effect of ultrasonic vibration assistance, mechanism of nanoscale ductile mode chip formation, cutting forces, tool wear and dynamic hard particles in the chip formation zone. Systematic experiments for nanoscale cutting of a number of brittle materials, including tungsten carbide, silicon and glass, are conducted and Molecular Dynamics (MD) modelling and simulation for nanoscale cutting of monocrystalline silicon are carried out. The results are shown in detail in the paper.

Online publication date: Wed, 30-May-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Abrasive Technology (IJAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com