Parallel computation of modular exponentiation for fast cryptography
by Nadia Nedjah, Luiza de Macedo Mourelle
International Journal of High Performance Systems Architecture (IJHPSA), Vol. 1, No. 1, 2007

Abstract: Modular exponentiation is fundamental to several public-key cryptography systems such as the RSA encryption system, as well as the most dominant part of the computation performed. The operation is time consuming for large operands. This paper analyses and compares the complexity of a variety of algorithms proposed to compute the modular exponentiation of a relatively large binary number and proposes a new parallel modular exponentiation method.

Online publication date: Thu, 19-Apr-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Systems Architecture (IJHPSA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com