The effect of orbital motion and eccentricity of drill pipe on pressure gradient in eccentric annulus flow with Newtonian and non-Newtonian fluids
by Hicham Ferroudji; Ahmed Hadjadj; Titus Ntow Ofei; Mohammad Azizur Rahman
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 20, No. 4, 2020

Abstract: The correct prediction of the pressure gradient is the fundamental parameter to establish an effective hydraulics program, which enables an optimised drilling process. In the present work, the effect of the orbital motion of the drill pipe on the pressure drop in an eccentric annulus flow with Newtonian and non-Newtonian fluids is studied numerically for both laminar and turbulent regimes using finite volume method (FVM). Furthermore, the effect of eccentricity when the inner pipe makes an orbital motion is evaluated. Different behaviours are observed in laminar and turbulent regimes. In the laminar regime, the simulation results showed that an increase of the orbital motion speed causes a considerable increment of the pressure gradient for the Newtonian fluid. For the power-law, non-Newtonian fluid in the laminar regime, on the contrary, a decrease of the pressure gradient is observed due to the shear-thinning effect. In the turbulent regime the mentioned trends are predicted to be much weaker. As eccentricity increases, the pressure drop of the non-Newtonian fluid decreases with a more pronounced diminish in pressure drop when the drill pipe is in orbital motion for both laminar and turbulent flow regimes.

Online publication date: Wed, 15-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com