Reflection behaviour of the porous tube boundary condition for FSI simulations of the truncated vascular network
by Seyed Hamidreza Attaran; Hanieh Niroomand-Oscuii
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 20, No. 4, 2020

Abstract: Among the several aspects of numerical simulations, the boundary condition is one of the most important issues to deal with in simulations of the cardiovascular network. Previously we introduced a new method for modelling the downstream of the truncated artery by means of porous media theory. In the present work, we aim to investigate the reflection characteristics of this new model and find the relation between the permeability and the reflection ratio. Numerical simulations have been performed and seven different cases have been tested. The results show a strong dependence of reflection on the permeability magnitude and it was found that the porous interface behaves like an intermediate situation between closed-end and open-end tubes.

Online publication date: Wed, 15-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com