Study on the specific grinding energy of cemented carbide (YG8) grinding with a vitrified diamond wheel in high speed regime
by Youji Zhan; Xiao Tian; Yongchao Xu; Minzhong Jia
International Journal of Abrasive Technology (IJAT), Vol. 9, No. 4, 2019

Abstract: Based on the chip geometry, a new mathematical model is established to correlate specific grinding energy with the maximum undeformed chip thickness, the cutting length, and grinding parameters. This work investigates the energy of cemented carbide (YG8) grinding with a vitrified diamond wheel in high speed regime (the grinding speed of up to 120 m/s). The results indicate that the specific grinding energy increases with the rise of the cutting length, while decreases with the increase in the maximum undeformed chip thickness. The distribution mechanism of the grinding energy shows that the grinding energy is mainly expended for sliding and ductile plowing. A nearly proportional relationship is obtained between the consumed power per unit width and the plowed surface areas generated by all cutting points per unit width. Compared to conventional grinding, it is found that specific grinding energy requirement is increased for high speed grinding of cemented carbide.

Online publication date: Thu, 16-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Abrasive Technology (IJAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com