Forthcoming and Online First Articles

International Journal of Nanotechnology

International Journal of Nanotechnology (IJNT)

Forthcoming articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Online First articles are published online here, before they appear in a journal issue. Online First articles are fully citeable, complete with a DOI. They can be cited, read, and downloaded. Online First articles are published as Open Access (OA) articles to make the latest research available as early as possible.

Open AccessArticles marked with this Open Access icon are Online First articles. They are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

Register for our alerting service, which notifies you by email when new issues are published online.

We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Nanotechnology (7 papers in press)

Regular Issues

  • A simulation-based study on the disc brake temperature distribution for optimizing hole geometry
    by Shyam Sunder Sharma, Hariharan Raju, Pranay Singh Tomar, Rajesh Jangid, Rahul Khatri 
    Abstract: Disc brakes used in automotive are responsible for braking to ensure a smooth and safe ride. This study deals with the thermal analysis of a disc brake rotor under various geometry of holes cut on the disc rotor surface. The friction on the disc escapes in the form of heat from the surface of the disc rotor. The temperature observed on the surface of the rotor, because of the friction developed between the brake pads and the rotor is analysed using ANSYS 18.1. The rotor is designed by assuming appropriate parameters in SOLIDWORKS 17. The temperature distribution and total heat flux were observed using ANSYS 18.1. The analysis was carried out on different hole geometries i.e. circular, square, 3/4th circular, straight slots, and rotor without holes. The dissipation of heat was found better in disc rotor with holes as compared to rotor without holes. The simulation study shows that the slotted holes on the disc rotor has surface temperature i.e. 89.356
    Keywords: Automotive disc brake; Simulation; Hole geometry; Heat dissipation.

Special Issue on: Smart Bio-Signal Acquisition System

  • Intelligent overlay algorithm for medical data management based on wireless communication technology and feature fusion   Order a copy of this article
    by Changrong Peng, Xiaodong Zhang, Qian Liu, Xiaofang Zhao, Chenyang Dai 
    Abstract: Medical data management through wireless communication system become essential to make data available at all time. To address the problem of poor quality of management, a intelligent overlay algorithm based on wireless communication technology and feature fusion is proposed. The algorithm first uses sensors remote sensing equipment to collect patient data and transmit them by wireless communication, followed by image and data filtering, then feature extraction and feature fusion, and finally seamless overlaying by projection model. The results show that the spatial frequency and average gradient of the superimposed patient data management meets the requirements, indicating that the resultant data after the application of the sensing data is superimposition algorithm based on wireless communication technology and feature fusion retain the detail components of the patient data more realistically, with good clarity, and the image information is better maintained.
    Keywords: wireless communication technology; feature fusion; medical data; sensors; intelligent overlay algorithm.

  • Evaluation method for colour matching using artificial intelligence technology   Order a copy of this article
    by Lijuan Yao, Ling Tang 
    Abstract: The existing colour matching evaluation methods have the problem of fuzzy colour attributes, which leads to high image distortion. This paper designs an evaluation method of public space indoor landscape colour matching based on artificial intelligence technology. The method quantifies the colour layout of the public space, determines the main colour of the space, identifies the colour attributes of the indoor landscape, deploys the combined colour phase ring, uses artificial intelligence technology to extract the colour matching features, calculates the colour distance combined with the transition colour frequency information, and adopts the colour quantisation algorithm to set the evaluation model. The experiment results show that the average distortions of the evaluation method and the other two evaluation methods is 30.12, 38.96, are 38.87, respectively, which proves that the colour matching evaluation method combined with artificial intelligence technology has higher use value.
    Keywords: artificial intelligence technology; colour layout; colour matching; evaluation method; public space; interior landscape;.

  • Stereoscopic display of architectural design images based on virtual reality technology   Order a copy of this article
    by Ling Tang, Lijuan Yao 
    Abstract: The current image stereoscopic display method mainly displays images stereoscopically from the perspective of human left and right eye visual imaging, which not only displays images with distortion and missing details, but also makes it difficult to realise interaction for complex image stereoscopic display. This paper proposes a stereoscopic display method of architectural design images based on virtual reality technology. The images are drawn using DIBR technology and the depth images are processed using Gaussian filtering and so on. After designing the virtual interaction of the image stereoscopic display scene, EON is used to analyse the lighting of the building exterior and realise the stereoscopic display of the image. The simulation experimental data of the stereoscopic display method show that the proposed image stereoscopic display method relatively improves the display effect by about 66.7% and has good adaptability for different grey value images.
    Keywords: architectural exterior; design images; image presentation; stereoscopic presentation; virtual interaction; virtual reality technology.

  • Network security analysis of diseases reporting in wireless sensor networks   Order a copy of this article
    by Zhang Yanling, Zhang Ting 
    Abstract: In order to solve the problem of low security in the process of direct reporting of traditional infectious diseases like ring worm, chicken pox, flu, cold etc, the corresponding network direct report security model is established by wireless communication technology. On this basis, the security risk level of wireless communication network is divided. This paper analyses the negative factors that affect network security from hacker attack, high risk vulnerability of software and user information tampering. Combined with the analysis results of multiple security mechanisms of the direct report network of infectious diseases, the quantitative evaluation of network security is realized, that is, the modelling and analysis of the network direct report security of infectious diseases is realized. Compared with traditional security model, it is found that the network direct report security model can reduce the loss and error of infectious disease data, which has a high application value. The proposed work computes less error rate of minimum 0.04 MB to maximum 0.14 MB. This error data is very less when compared to traditional techniques.
    Keywords: direct epidemic reporting; epidemic network; infectious diseases; security model; wireless communication technology.

  • Deep learning-based feature extraction coupled with multi-class SVM for COVID-19 detection in the IoT era   Order a copy of this article
    by Auwalu Mubarak, Sertan Serte, Fadi Al-Turjman, Rabiu Aliyu, Zubaida Said, Mehmet Ozsoz 
    Abstract: The deadly coronavirus virus (COVID-19) was confirmed as a pandemic by the World Health Organisation (WHO) in December 2019. Prompt and early identification of suspected patients is necessary to monitor the transmission of the disease, increase the effectiveness of medical treatment and as a result, decrease the mortality rate. The adopted method to identify COVID-19 is the Reverse-Transcription Polymerase Chain Reaction (RT-PCR), the method is affected by the shortage of RT-PCR kits and complexity. Medical imaging using deep learning has proved to be one of the most efficient methods of detecting respiratory diseases, but efficient deep learning architecture and low data are affecting the performance of the deep learning models. To detect COVID-19 efficiently, a deep learning model based feature extraction coupled with Support Vector Machine (SVM) was employed in this study, Seven pre-trained models were employed as feature extractors and the extracted features are classified by multi-class SVM classifier to classify CT scan images from COVID-19, common pneumonia and healthy individuals. To improve the performance of the models and prevent overfitting, training was also carried out on augmented images. To generalise the model's performance and robustness, three datasets were merged in the study. The model with the best performance is the VGG19 which was trained with augmented images: it achieved an accuracy of 96%, a sensitivity of 0.936, a specificity 0f 0.967, an F1 score of 0.935, a precision of 0.934, a Yonden Index of 0.903 and AUC of 0.952. The best model shows that COVID-19 can be detected efficiently on CT scan images.
    Keywords: artificial intelligence; COVID-19; SVM; feature extraction.
    DOI: 10.1504/IJNT.2021.10040115
     

Special Issue on: Eco-Friendly and Sustainable Cognitive Green Nano-Technologies for the Mitigation of Emerging Environmental Pollutants

  • Preparation of titanium dioxide composite nanomaterials using copper catalysis and their dynamic adsorption and photocatalytic performance in water treatment   Order a copy of this article
    by Ye Tian 
    Abstract: The aim is to investigate the dynamic adsorption performance of titanium dioxide (TiO2) nanocomposite materials in water treatment, providing direction for water purification. The copper-catalysed living free-radical polymerization method polymerizes the prepared TiO2 particles with tertiary amine polymer to manufacture the TiO2 polymer nanocomposite materials. The prepared TiO2 nanocomposite materials are then modified to obtain the quaternised TiO2 polymer nanocomposite materials (quaternised TiO2@poly(DEAEMA)), which are characterized and analysed. Finally, the water treatment performance of quaternised TiO2@poly(DEAEMA) is judged through photocatalysis and adsorption experiments, while the antibacterial performance of the prepared materials is judged using the common Escherichia coli and Staphylococcus aureus. Results demonstrate that the quaternised TiO2@poly(DEAEMA) polymer nanocomposite materials are completely and tightly wrapped, presenting a flower-like appearance, with a significantly-increased diameter and an average size of about 600nm, which can be utilized as the pollutant adsorbent. Water treatment simulation reveals the fastest adsorption rate and the highest adsorption capacity of quaternised TiO2@poly(DEAEMA), reaching 265 mg/g given the same reaction time. The catalytic removal rate in ultraviolet and visible light reaches 94%, and the photocatalysis of visible light reaches 69%. Until the reaction lasts for 45 minutes, its antibacterial activity is optimal, and the diameter of the inhibition zone against Escherichia coli and Staphylococcus aureus exceeds 16 mm. Therefore, the prepared TiO2 nanomaterials have high adsorption properties, good photocatalysis performance, and excellent antibacterial properties, which can provide an experimental basis for the treatment and purification of water resources in the industry.
    Keywords: titanium dioxide; water treatment; dynamic adsorption; photocatalysis; nanocomposite material.