Forthcoming articles

 


International Journal of Intelligent Engineering Informatics

 

These articles have been peer-reviewed and accepted for publication in IJIEI, but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

 

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

 

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

 

Articles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

 

Register for our alerting service, which notifies you by email when new issues of IJIEI are published online.

 

We also offer RSS feeds which provide timely updates of tables of contents, newly published articles and calls for papers.

 

International Journal of Intelligent Engineering Informatics (16 papers in press)

 

Regular Issues

 

  • Data Mining and Ontology Based Techniques in HealthCare Management   Order a copy of this article
    by Hassan Mahmoud, Enas Abbas, Ibrahim Fathy 
    Abstract: Recently, large amounts of data have been produced due to the achieved advances in biotechnology and health sciences fields. It includes clinical information and genetic data which contained in Electronic Health Records (EHRs). Therefore, there was a need for innovative and effective methods for representing this amount of data. On the other side, it is very important to detect syndromes, which can badly influence the human health in addition to putting financial burdens on their shoulders, in an early stage to avoid many complications. Recently, different data mining techniques in addition to ontology based techniques have played a great role in building automated systems that have the ability to detect syndromes efficiently and accurately. In this paper, we cover some of the research efforts that have employed either the data mining techniques or ontology based techniques, or both in detecting syndromes. Additionally, a set of well-known data mining techniques including Decision Trees (j48), Na
    Keywords: Data Mining; Ontology; Healthcare; Syndrome detection.

  • Single-Step Change Point Estimation in Nonlinear Profiles using Maximum Likelihood Estimation
    by Ali Ghazizadeh, Hashem Mahlooji, Ahmad Taher Azar, Mahdi Hamid, Mahdi Bastan 
    Abstract: In this work, we study the change point problem in non-linear profiles. A maximum likelihood estimator (MLE) is proposed for single step change point detection in non-linear profiles. Due to the complexity of estimating the parameters of the non-linear model by MLE, this estimator is based on the difference between the response variables and in-control profile curve with no need of estimating the regression parameters. Since the likelihood function (or its logarithm) is complicated enough to deter one from estimating the time of change by an exact method we resort to techniques in numerical analysis for this purpose. Finally, the performance of the proposed estimator is tested through simulation studies.
    Keywords: Statistical process control; Non-linear profile; Step change point; Maximum likelihood estimator.

  • Intelligent PSO based PDs/PIDs Controllers for an Unmanned Quadrotor   Order a copy of this article
    by Nada El Gmili, Mostafa Mjahed, Abdeljalil El Kari, Hassan Ayad 
    Abstract: This paper presents intelligent PDs/PIDs controllers based on Particle Swarm Optimization (PSO) for an Unmanned Aerial Vehicle (UAV) quadrotor. Because of physical effect, the aircraft dynamics' nature is fully coupled and strongly nonlinear. Firstly, the mathematical model is derived using Newton-Euler formalism. Based on this model, a nonlinear control scheme, incorporating six PDs/PIDs controllers, is developed to control the position (x and y), the altitude z and the attitude (ϕ, θ and ψ angles). Secondly, the metaheuristic Particle Swarm Optimization (PSO) and the conventional Reference Model (RM) techniques are applied to tune the PDs and PIDs gains for the aircraft stability. Finally, diverse simulations using MATLAB prove that PD-PSO is more suitable and efficient for the quadrotor control. Indeed, its robustness is demonstrated in presence of wind disturbances.
    Keywords: Quadrotor; Nonlinear; UAV; PD; PID; Controllers; PSO; Reference Model; Control; Stabilization; Trajectory tracking.

  • New Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption   Order a copy of this article
    by Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Ben Ahmed 
    Abstract: Due to increasing energy requirements and associated environmental impacts, nowadays most embedded systems suffer from resource constraints as they are designed for applications that run in real-time. Many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a new hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Planning (NFP) with the energy Priority Earlier Deadline First (PEDF) algorithm. The preliminary experiments to compare the reconfigurable resulting from a conventional methods are presented. The results are then discussed.
    Keywords: Optimization; Neural Networks; Real-Time Scheduling; Low-Power Consumption.

Special Issue on: Advances in Intelligent Big Data Analytics

  • Empirical Investigation of Dimension Hierarchy Sharing Based Metrics for Multidimensional Schema Understandability   Order a copy of this article
    by Anjana Gosain, Jaspreeti Singh 
    Abstract: Over the last years quality has gained lot of importance in the development of data warehouse systems. Predicting understandability of multidimensional schemas could play a key role in controlling data warehouse quality at early stages of development. In this area, some effort has been spent to define structural metrics and identity models for assessing quality of these systems. Of the structural properties used to define metrics, aspects of dimension hierarchies and its sharing plays primary role to enhance analytical capabilities of multidimensional schemas, thereby affecting their quality. The authors have previously proposed structural metrics based on aforementioned aspects. The objective of this study is to apply Principal Component Analysis (PCA) to find whether our metrics are improvements over the other existing metrics; and to apply Logistic Regression to study whether the metrics (selected as relevant in the extracted principal components) combined together are indicators of multidimensional schema understandability. The results of PCA confirm that our structural metrics based on the concept of sharing are different from other such metrics existing in the literature. Further, the metrics selected as principal components can be used in combination to predict understandability of data warehouse multidimensional schemas.
    Keywords: Data Warehouse; Quality Metrics; Principal Component Analysis; Logistic Regression; Understandability; Multidimensional Schemas.

  • Measuring harmfulness of class imbalance by data complexity measures in oversampling methods   Order a copy of this article
    by Deepika Singh, Anjana Gosain, Anju Saha 
    Abstract: Many real world applications consist of skewed datasets which result in class imbalance problem. During classification, class imbalance cause underestimation of minority classes. Researchers have proposed a number of algorithms to deal with this problem. But recent research studies have shown that some skewed datasets are unharmful and applying class imbalance algorithms on these datasets lead to degenerated performance and increased execution time. In this research paper, we have pre-estimated the degree of harmfulness of class imbalance for skewed classification problems, using two of the data complexity measures: scatter matrix based class separability measure and ratio of intra-class versus inter-class nearest neighbors. Also the performance of oversampling based class imbalance classification algorithms have been analyzed with respect to these data complexity measures. The experiments are conducted using k-nearest neighbor (k-nn) and naivebayes as the base classifiers for this study. The obtained results illustrate the usefulness of these measures by providing the prior information about the nature of the imbalance datasets that help us to select the more efficient classification algorithm.
    Keywords: class imbalance; data complexity measure; class separability measure; class overlapping; inter-class nearest neighbor; intra-class nearest neighbor; imbalance ratio; oversampling method.

  • Threshold based Empirical Validation of Object-Oriented Metrics on Different Severity Levels   Order a copy of this article
    by Aarti Aarti, Geeta Sikka, Renu Dhir 
    Abstract: Software metrics has become desideratum for the fault-proneness, reusability and effort prediction. To enhance and intensify the sufficiency of object-oriented (OO) metrics, it is crucial to perceive the relationship between OO metrics and fault-proneness at distinct severity levels. This paper characterize on the investigation of the software parts with higher probability of occurrence of faults. We examined the effect of thresholds on the OO metrics and build the predictive model based on those threshold values. This paper also instanced on the empirical validation of threshold values calculated for the OO metrics for predicting faults at different severity levels and builds the statistical model using logistic regression. This paper depicts the detection of fault-proneness by extracting the relevant OO metrics and focus on those projects that falls outside the specified risk level for allocating the more resources to them. We presented the effects of threshold values at different risk levels and also validated results on the KC1 dataset using machine learning and different classifiers. The results evaluated on the Receiver and operator (ROC) parameters concluded that threshold methodology has great potential for conducting prediction of faults and shows that analysis of result using machine learning techniques outperforms as compared to logistic regression.
    Keywords: Fault; Object-oriented (OO) metrics; Classification; ROC; Level of severity; Empirical Validation.

  • An Ensemble Clustering Method for Intrusion Detection   Order a copy of this article
    by Kapil K. Wankhade, Kalpana C. Jondhale 
    Abstract: The amount of data in the field of computer networking growing rapidly and this urge new challenges in the field of an Intrusion Detection System (IDS). To handle such increasing volume of data, new hybrid approach has to be developed to overcome the problems such as high detection rate and low false alarm rate. An Intrusion Detection System plays a vital role against detection of malicious attacks. Data mining and machine learning techniques are important and plays vital role in detection of attacks. This paper mainly focuses on detection rate and false alarm rate so to resolves these problems a hybrid method, ensemble clustering has been proposed. This method tries to increase detection rate with lowering false alarm rate. The method has been tested on KDDCup99 network intrusion dataset and performs well as compared with other algorithms in terms of detection rate false alarm rate.
    Keywords: boosting; classification; clustering; data mining; divide and merge; detection rate; false alarm rate; intrusion detection system; ensemble method; k-means.

  • Detecting Concept Drift using HEDDM in Data Stream   Order a copy of this article
    by Snehlata S. Dongre, Latesh G. Malik, Achamma Thomas 
    Abstract: In evolving Data Stream, when its concept undergoes a change it is known as concept drift. Detecting Concept Drift and handling it is a challenging task in Data Stream Mining. If an algorithm is not adapted to Concept Drift, then it directly affects its performance. A number of algorithms have been developed to handle concept drift, but they are not suited for both - Sudden Concept Drift and Gradual Concept Drift. Thus, there is a demand for an algorithm that can react to both the types of concept drift as well as incur less computational cost. A new approach - Hybrid Early drift Detection Method (HEDDM) - has been proposed for drift detection, which works with an ensemble method to improve the performance.
    Keywords: Concept drift; data stream; classification; ensemble classifier; concept drift detection; DDM; EDDM; HEDDM; data stream mining; evolving data stream.

  • Dynamic Social Network Analysis and Performance Evaluation   Order a copy of this article
    by Sanur Sharma, Anurag Jain 
    Abstract: Social media in todays age is on a tremendous increase in terms of its usage and the enormous amount of data it generates which includes personal details of users, their images and the content that is being shared on such open source platforms. This has led to a lot of research and analysis of such networks and data that exists in social media. This paper is focused on dynamic analysis of social networks, where snapshots of network are taken at regular intervals and are analysed on various performance measures. The real time email dataset of a company (ENRON) has been evaluated and visualized dynamically. The network measures are evaluated at each timestamp and clustering is performed on that data and its performance is calculated on various measures. Tabu search optimization algorithm has been used for clustering the timestamped data and a comparison is done between the fixed size cluster and variable size clusters. The results suggests that for certain time stamps the value of precision, recall and f measure for fixed size clusters are better than the variable size clusters. These measures can further be used for the selection of the dynamic clustering techniques for social network analysis.
    Keywords: Social Network; Dynamic Social Network; Clustering; Dynamic Network Analysis; Data Mining.

Special Issue on: Advances and Applications of Computational Intelligence

  • Speed Control of a Doubly-Fed Induction Machine (DFIM) Based on Fuzzy adaptive   Order a copy of this article
    by Abderazak SAIDI, Farid NACERI 
    Abstract: In this paper, we are interested in the adaptive fuzzy control a technique has been studied and applied, namely adaptive fuzzy control based on theory of Lyapunov. The system based on the stability theory is used to approximate the gains Ke and kdce to ensure the stability of the control in real time .the simulations results obtained by using Matlab environment gives that the fuzzy adaptive control more robust, also it has superior dynamics performances. The results and test of robustness will be presented.
    Keywords: adaptive fuzzy control ; Doubly fed Induction Machine (DFIM) ; Fuzzy Control ; Robust control; regulator ; stability.

  • Whale Optimization Algorithm Based Controller Design for Reverse Osmosis Desalination Plants   Order a copy of this article
    by Natwar Singh Rathore, Vinay Pratap Singh 
    Abstract: In this contribution, whale optimization algorithm (WOA) based controllers are presented for reverse osmosis (RO) desalination plants. Two proportional-integral-derivative (PID) controllers are designed for flux and conductivity of RO plant model. The tuning of these controllers is carried out with a newly proposed algorithm i.e. WOA. The minimization of integral-of-squared-error (ISE) is considered as performance index for design of objective function in the problem. The performance of proposed controllers is compared with other optimization algorithms-based controllers. Simulation results show the supremacy of WOA based controllers over the other controllers. The proposed controllers are found best for RO desalination plants in terms of control of RO unit model.
    Keywords: Conductivity; desalination; flux; integral-of-squared-error (ISE); proportional-integral-derivative (PID) controller; reverse osmosis (RO); whale optimization algorithm (WOA).

  • Performance evaluation of conventional and Fuzzy control systems for speed control of a DC motor using Positive Output Luo Converter   Order a copy of this article
    by Mohamed BOUTOUBA, Abdelghani El Ougli, Belkassem Tidhaf 
    Abstract: Precise speed control of DC motors is an important requirement for efficient industrial automation and diverse applications fields. In this paper, a speed control of a DC motor for a photovoltaic system is proposed using fuzzy logic technique as a controller with a DC-DC converter type Positive output Luo converter. Positive Output Luo converter, one of a new generation of DC-DC converters which presents multiples advantages, is used as an intermediary between the photovoltaic source and the DC motor, in order to control the transmitted power with low power losses. Multiples classical control techniques could be used to control DC motor speed. However, in this work a PI Fuzzy logic controller is proposed to get better pursuit, response and speed accuracy which represent important parameters to control on some industrial applications. Different system blocks are developed on Matlab/Simulink as environment. Simulation results, using comparison between a Conventional PID controller and the PI-Fuzzy Logic controller, demonstrate the good behavior of the proposed system.
    Keywords: DC motor; Speed control; Positive output Luo converter; PID controller; Fuzzy logic controller.

  • Evolutionary-based Method for Risk Stratification of Diabetic Patients   Order a copy of this article
    by Viorica Rozina Chifu, Emil Stefan Chifu, Ioan Salomie, Cristina Bianca Pop, Madalina Lupu 
    Abstract: Biologically-inspired computing is an interdisciplinary research domain that brings together principles from mathematics, computer science and biology in order to develop intelligent algorithms or high performance computing models that are able to capture the social behaviour of animals, insects, birds or other living organisms. Recently, bio inspired computing has been successfully applied for solving problems in the e-health domain. This chapter addresses the problem of optimality in the e-health domain by proposing an evolutionary-inspired method for clustering patients according to the risk of having diabetes. This method clusters patients based on their similarity with respect to the following features: age, sex, race category, body mass index, whether the patient has or hasnt hypertension, and the presence or absence of first-degree relatives with diabetes. Our method has been tested on the NHANESIII data set
    Keywords: Patient Risk Stratification; Evolutionary Algorithms; Clustering indexes.

  • Design of an Adaptive Sliding Mode Controller for Efficiency Improvement of the MPPT for PV Water Pumping   Order a copy of this article
    by Sabah MIQOI, Abdelghani El Ougli, Belkassem Tidhaf 
    Abstract: This paper represents a conception and simulation of a photovoltaic (PV) water pump along with a new maximum power point tracker (MPPT) control to ensure the operation of the PV system at a maximum power for various climatic conditions. In particular, we propose a robust tracking controller, an adaptive sliding mode control (ASMC). Our system includes a PV panel, DC/DC Boost converter, a DC motor, a centrifuge water pump and an MPPT controller that generates the duty cycle to the boost converter. The proposed controller is compared to a sliding mode control (SMC) and a classic perturb and observe (P&O) algorithm. The system is simulated in MATLAB/SIMULINK and the results show the good functioning and the improvement of the performance of the PV system using the proposed controller.
    Keywords: MPPT controller; DC/DC boost converter; PV panel; SMC (sliding mode control); adaptive sliding mode control; P&O algorithm; MPP; water pump; DC motor.

  • POFGURST: An expert intelligent system for mechanized oil palm fruit evaluating framework   Order a copy of this article
    by Gaurang Patkar 
    Abstract: The POFGURST framework is a product bundle for palm oil fruit grading using rough set theory. It is an apparatus for reviewing utilizing unthinkable information inside the structure of rough set hypothesis. POFGURST is intended to support the palm oil reviewing and information revelation process: From beginning perusing and preprocessing of the information, by means of calculation of insignificant trait sets and generation of if-then standards or expressive examples, to approval and investigation of the initiated principles or examples. POFGURST offers an exceedingly natural GUI environment where information navigational capacities are underlined. This product is uniquely intended for oil palm fruit evaluating and also malady expectation.
    Keywords: Rough Set Theory; agriculturist; fuzzy logic; robotization; Unified modeling language; Chlorosis; Ganoderma,.