Int. J. of Nanotechnology   »   2017 Vol.14, No.1/2/3/4/5/6



You can view the full text of this article for Free access using the link below.



Title: The spontaneous motion of a slug of miscible liquids in a capillary tube


Authors: Mathieu Sellier; Claude Verdier; Volker Nock


Department of Mechanical Engineering, University of Canterbury, Private Bag, 4800, Christchurch, 8140, New Zealand
Laboratoire Interdisciplinaire de Physique (LIPhy), CNRS and Université Grenoble Alpes (UMR 5588), F-38000, France
Department of Electrical and Computer Engineering, University of Canterbury, Private Bag, 4800, Christchurch, 8140, New Zealand


Abstract: This contribution explores a droplet actuation mechanism which involves mixing slugs of two different liquids in a glass capillary. The resulting contrast in surface tension which arises provides the necessary propulsive power for the droplet. The conceptual idea is demonstrated for an ethanol-water system. The droplet is observed to rapidly reach a peak velocity which then gradually decreases with time as the two miscible liquids mix. A model is proposed based on Newton's second law which is able to capture the main observed flow phenomena and explain the driving and dissipative mechanisms simultaneously at play in the droplet. This passive actuation mechanism could prove an attractive alternative in digital microfluidics systems for which bulky pumping systems are often required.


Keywords: droplets; droplet actuation; self-propulsion; digital microfluidics; multiphase flow; miscible liquids; contact line; wetting; spontaneous motion; capillary tubes; surface tension; ethanol-water systems.


DOI: 10.1504/IJNT.2017.082475


Int. J. of Nanotechnology, 2017 Vol.14, No.1/2/3/4/5/6, pp.530 - 539


Available online: 21 Feb 2017



Editors Full text accessFree access Free accessComment on this article