The spontaneous motion of a slug of miscible liquids in a capillary tube
by Mathieu Sellier; Claude Verdier; Volker Nock
International Journal of Nanotechnology (IJNT), Vol. 14, No. 1/2/3/4/5/6, 2017

Abstract: This contribution explores a droplet actuation mechanism which involves mixing slugs of two different liquids in a glass capillary. The resulting contrast in surface tension which arises provides the necessary propulsive power for the droplet. The conceptual idea is demonstrated for an ethanol-water system. The droplet is observed to rapidly reach a peak velocity which then gradually decreases with time as the two miscible liquids mix. A model is proposed based on Newton's second law which is able to capture the main observed flow phenomena and explain the driving and dissipative mechanisms simultaneously at play in the droplet. This passive actuation mechanism could prove an attractive alternative in digital microfluidics systems for which bulky pumping systems are often required.

Online publication date: Fri, 24-Feb-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com