Int. J. of Wireless and Mobile Computing   »   2015 Vol.8, No.2

 

 

Title: Adaptive gesture tracking and recognition using acceleration sensors for a mobile device

 

Authors: Minsu Jang; Jaehong Kim; Yong-Ho Seo; Hyun-Seung Yang

 

Addresses:
Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon-si, South Korea; Electronics and Telecommunications Research Institute (ETRI), Daejeon-si, South Korea
Electronics and Telecommunications Research Institute (ETRI), Daejeon-si, South Korea
Department of Intelligent Robot Engineering, Mokwon University, Daejeon-si, South Korea
Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon-si, South Korea

 

Abstract: We present in this paper an adaptive gesture classifier for mobile devices, along with an efficient method to automatically detect endpoints of gestures. A classification model based on 1-NN with DTW-based k-means clustering is augmented by a metacognitive framework that measures the quality of the learned model and continuously updates it to improve the performance. We evaluated the model with an accelerometer signal database of 26 English alphabets. The results showed that the adaptive framework improved the recall and precision rates by 4.9% and 5.6%, respectively. Our endpoint detection method, based on energy variance and low-pass filtering, successfully detected 98.5% of gestures with an average detection delay of 176 ms.

 

Keywords: accelerometers; gesture recognition; adaptation; metacognition; adaptive gesture tracking; acceleration sensors; mobile devices; DTW; discrete wavelet transform; k-means clustering.

 

DOI: 10.1504/IJWMC.2015.068624

 

Int. J. of Wireless and Mobile Computing, 2015 Vol.8, No.2, pp.183 - 193

 

Date of acceptance: 20 Aug 2014
Available online: 28 Mar 2015

 

 

Editors Full text accessAccess for SubscribersPurchase this articleComment on this article