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Abstract: This paper proposes a control scheme to suppress the effects in steady state on
output caused by unknown disturbances to input and output and deviations of parameters in
transfer functions. The scheme is based on generalised minimum variance control (GMVC). In
many cases, the disturbances and parameter changes are caused by frictions, backlash, payload
changes, parts replacement or aged deterioration and they are slowly changing, such as step-wise
or ramp-wise. Hence in this paper, the disturbances and parameter changes are supposed to be
slowly changing. First conditions to suppress effects on output of disturbances and parameter
changes are obtained. Then the controller to suppress such effects are obtained by selecting
parameters to satisfy the conditions of Yola-Kucera generalised stabilising controller. Numerical
simulations of a model of two-degree of freedom fourth order system are given to show the
effectiveness of the proposed controller.
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1 Introduction

Mechanical systems are frequently corrupted by unknown
disturbances such as frictions or backlash and parameter
changes caused by aged deterioration. To obtain
high-precision positioning control, it is crucially important
to suppress the effects of such unknown disturbances and
parameter chances.

For this purpose, generalised minimum variance control
(GMVC) (Clarke and Gawthrop, 1979) is suitable by
the ability to control unstable and non-minimum phase
plants by using the generalised output. Also, GMVC has
a simple structure comparing to generalised predictive
controller (GPC), that is, GMVC needs to solve only
one Diophantine polynomial equation, whereas, GPC has
several Diophantine equations. By these reasons, GMVC is
applied in industry (Ramos et al., 2004; Fusco and Russo,
2006; Laurinda et al., 2007) and to mechanical systems. The
controller of this paper is based on GMVC.

A method to reduce the effects of disturbance and plant
parameter deviations from nominal values is to treat these
deviations as plant uncertainty and there are many papers to
discuss the uncertainty as the robust control (Doyle et al.,
1990). But most of papers of robust control consider the
conditions for stability of plants including uncertainty and
do not give the reductions of the effects of the uncertainty.

Also the effects of disturbance and plant parameter
deviations are expressed by sensitivity functions and using
the functions, the suppress of these effects are made into
model matching problem and the problem is solved by
H∞ technique (Vidyasagar, 1985). But the method needs to
solve H∞ problem.

For GMVC, the controller by polynomial approach
is extended to the generalised Youla-Kucera controller
(Vidyasagar, 1985) and is applied to a strongly stable
controller (Inoue et al., 1999; Inoue and Deng, 2013).
To reduce the effects of disturbances to inputs of the
plant, the extended controller is used (Inoue et al., 2021).
But the paper does not consider disturbance to output
and parameter deviations. And a state space controller of
GMVC equivalent to the controller by polynomial approach
is obtained (Inoue et al., 2022). The equivalent controller
is used under the corruption of disturbances, but the paper
does not derive the extended controller and also does not
consider parameter changes.

As for the applications of the extended controller,
there exist several papers for GPC. Kouvaritakis et al.
(1992) introduced a Youla parameter to enhance the degree
of robustness of the closed loop systems. Cheng et al.
(2009) extended the result to GPC with constrains. As
for the suppression of the effects of disturbances, Inoue

et al. (2018a) used an extended controller with a full-order
observer, used a reduced-order observer (Inoue et al.,
2018b), also used a disturbance estimating observer (Inoue
et al., 2018c). But these papers do not consider the
parameter deviations.

This paper proposes a control scheme for the suppress
of effects in steady state on output caused by unknown
disturbances to input and output and deviations of
parameters in transfer function.

Since in many cases, disturbances and parameter
deviations are caused by frictions, backlashes, payload
changes, parts replacements or aged deterioration in
mechanical systems and they change slowly. Hence, in this
paper, the disturbances and parameter changes are supposed
to be slowly changing.

To suppress the effects of disturbances on output and
parameter deviations is original of this paper. And the
analysis of the effects is newly unified one.

First the effects on output of disturbances and parameter
changes are analysed and conditions to suppress such
effects are obtained. Then the controller to suppress these
effects are obtained by selecting parameters to satisfy
the conditions in an extended controller of GMVC of
polynomial approach. The extended controller is derived by
using Yola-Kucera generalised stabilising controller.

Numerical simulations of a model of two-degree of
freedom fourth order system are given to show the
effectiveness of the proposed controller.

2 Problem statement

The controlled plant has single-input single-output and
described as

(A(z−1) + dA(z−1))y(k)

= z−d(B(z−1) + dB(z−1))(u(k) + du(k)), (1)

yo(k) = y(k) + dy(k), k = 0, 1, ... (2)

where z−1 denotes time-delay; z−1y(k) = y(k − 1).

2.1 Variables in the plant

The variables are:

• u(k): control input

• du(k): unknown slowly changing disturbance to input
u(k)

• y(k): output not observable



Suppress of effects in steady state of disturbance and parameter deviations of GMVC 43

• yo(k): observed output corrupted by dy(k)

• dy(k): unknown slowly changing disturbance to
output y(k)

• d: known time delay.

The reason to restrict disturbances and parameter deviations
to be slowly changing is explained in Remark at the end of
Section 5.

A(z−1) and B(z−1) are known nominal polynomials
of order n, m and n > m also n > d+m. dA(z−1)
and dB(z−1) are unknown slowly changing parameter
deviations. A(z−1) and B(z−1) are denoted by

A(z−1) = 1 + a1z
−1 + ...+ anz

−n, (3)
B(z−1) = b0 + b1z

−1 + ...+ bmz−m. (4)

2.2 Control objective

The control objective is that the output y(k) has a desirable
response to the reference input r(k) under the slowly
changing unknown disturbances du(k) and dy(k) and the
slowly changing unknown parameter deviations dA(z−1)
and dB(z−1).

To this objective, GMVC designs a controller to
minimise the following index

J = Φ(k + d)2 (5)

using the generalised output Φ(k + d),

Φ(k + d) = P (z−1)y(k + d) +Q(z−1)u(k)

−R(z−1)r(k),

P (z−1) = p0 + p1z
−1 + ...+ ppz

−p,

p0 ̸= 0, p > d,

Q(z−1) = q0 + q1z
−1 + ...+ qqz

−q,

R(z−1) = r0 + r1z
−1 + ...+ rrz

−r. (6)

where P (z−1), Q(z−1) and R(z−1) are design
polynomials. That is, P (z−1) and Q(z−1) are selected
to satisfy the next condition to obtain a given desirable
closed-loop characteristic T (z−1) (Clarke and Gawthrop,
1979),

P (z−1)B(z−1) +Q(z−1)A(z−1) = T (z−1). (7)

Polynomial R(z−1) is selected to satisfy the close-loop
steady gain to be equal to 1.

3 GMVC controller

First, GMVC is designed for the nominal plant

A(z−1)y(k) = z−dB(z−1)u(k), (8)

without disturbances and parameter changes and plant
output y(k) is observable.

To minimise J , control input is designed using the
estimate Φ̂(k + d|k) of Φ(t+ d) to zero;

Φ̂(k + d|k) = 0. (9)

The estimate Φ̂(k + d|k) is obtained by using information
of the present and the past inputs u(k), u(k − 1), ... and
outputs y(k), y(k − 1), .... Hence, it needs to estimate the
only values of the future steps of y(k + i), (i = d, d−
1, ..., 1) in the first term P (z−1)y(k + d) and the rests
of outputs y(k + i), (i = 0,−1, ..., d− p) in the term are
measured directly and are not necessary to be estimated.
Therefore, to separate the outputs necessary to be estimated
and the output not necessary and also to select the value
of the present input u(k), polynomials P (z−1) and Q(z−1)
are separated as;

P (z−1) = P1(z
−1) + z−dP2(z

−1), (10)
P1(z

−1) = p0 + p1z
−1 + ...+ pd−1z

−d+1, (11)
P2(z

−1) = pd + pd+1z
−1 + ...+ ppz

−p+d, (12)
Q(z−1) = q0 + z−1Q2(z

−1), (13)
Q2(z

−1) = q1 + q2z
−1 + ...+ qqz

−q+1. (14)

Then the only term necessary to be estimated in the function
Φ(k + d) of equation (6) is P1(z

−1)y(k + d) and it is
defined as

Φ1(k + d)
def
= P1(z

−1)y(k + d). (15)

To estimate Φ1(k + d), solve Diophantine equation (Clarke
and Gawthrop, 1979)

P1(z
−1) = A(z−1)E(z−1) + z−dF (z−1), (16)

and define polynomial S(z−1)

S(z−1) = E(z−1)B(z−1) = s0 + z−1S1(z
−1). (17)

where E(z−1) is (d− 1)th order and F (z−1) is (n−
1)th order polynomials. Multiply zdE(z−1) to plant (8)
and substitute A(z−1)E(z−1) = P1(z

−1)− z−dF (z−1) of
equation (16),

zd(P1(z
−1)− z−dF (z−1))y(k)

= zdE(z−1)z−dB(z−1)u(k),

P1(z
−1)y(k + d) = F (z−1)y(k)

+S(z−1)u(k). (18)

Then define an estimate Φ̂1(k + d|k) of Φ1(k + d) =
P1(z

−1)y(k + d) as

Φ̂1(k + d|k) def
= F (z−1)y(k) + S(z−1)u(k). (19)

P (z−1)y(k + d) = P1(z
−1)y(k + d) + P2(z

−1)y(k),(20)

using this equation, estimate Φ̂(k + d|k) is defined as

Φ̂(k + d|k) def
= Φ̂1(k + d|k) + P2(z

−1)y(k)

+Q(z−1)u(k)−R(z−1)r(k). (21)

And the controller is derived from Φ̂(k + d|k) = 0, then,
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(F (z−1) + P2(z
−1))y(k) + (S(z−1) +Q(z−1))u(k)

−R(z−1)r(k) = 0. (22)

Using equations (13) and (17), this equation is

(F (z−1) + P2(z
−1))y(k) + s0u(k)

+S1(z
−1)u(k − 1) + q0u(k) +Q2(z

−1)u(k − 1)

−R(z−1)r(k) = 0. (23)

Then control input is

u(k) = [−F (z−1 + P2(z
−1))y(k)

−(S1(z
−1) +Q2(z

−1))u(k − 1)

+R(z−1)r(k)]/(s0 + q0). (24)

4 Extended controller

The controller (24) is extended to Youla-Kucela generalised
stabilising controllers (Vidyasagar, 1985; Inoue and Deng,
2013).

Let Ud(z
−1) and Un(z

−1) be design parameter
polynomials of orders nd and nn;

Ud(z
−1) = ud0 + ud1z

−1 + ...+ udnd
z−nd , (25)

Un(z
−1) = un0 + un1z

−1 + ...+ udnnz
−nn . (26)

The controller u(k) of equation (24) is extended to ue(k)
by adding an additional term ua(k) as

ue(k) = u(k) + ua(k), (27)

ua(k) =
Un(z

−1)

Ud(z−1)
(z−dB(z−1)ue(k)

−A(z−1)y(k)). (28)

When Ud(z
−1) and Un(z

−1) be chosen as

Ud(z
−1) = 1, Un(z

−1) = 0. (29)

Then the additional term ua(k) = 0 disappears and the
extended controller reduces to non-extended one.

5 Effects of disturbances and parameter deviations to
plant output

This section gives a mathematical expression of the effects
of disturbances and parameter deviations to plant output at
the steady state. In controllers (22) and (28), the observed
output yo(k) is used. Then the extended controller is

(F (z−1) + P2(z
−1))yo(k) + (S(z−1) +Q(z−1))u(k)

−R(z−1)r(k) = 0, (30)

ua(k) =
Un(z

−1)

Ud(z−1)
(z−dB(z−1)ue(k)

−A(z−1)yo(k)), (31)
ue(k) = u(k) + ua(k). (32)

Substituting equations (31) and (32) into equation (30), the
extended controller is rewritten as

Gd(z
−1)ue(k) = −Gn(z

−1)yo(k) +Gr(z
−1)r(k), (33)

Gd(z
−1) = (S(z−1) +Q(z−1))

×(Ud(z
−1)− z−dB(z−1))Un(z

−1), (34)
Gn(z

−1) = (F (z−1) + P2(z
−1))Ud(z

−1)

+(S(z−1) +Q(z−1))A(z−1)Un(z
−1), (35)

Gr(z
−1) = Ud(z

−1)R(z−1). (36)

Substituting ue(k) of equation (33) into u(k) in
equation (1), the closed-loop system is obtained.

(Ty(z
−1) +Gd(z

−1)dA(z−1)

+Gn(z
−1)z−ddB(z−1))y(k) = Tdy(z

−1)dy(k)

+Tdu(z
−1)du(k) + Tr(z

−1)r(k), (37)
Ty(z

−1) = Gd(z
−1)A(z−1) + z−dB(z−1)Gn(z

−1)

= Ud(z
−1)(Q(z−1)A(z−1) + P (z−1)B(z−1)), (38)

Tdy(z
−1) = −z−d(B(z−1) + dB(z−1))Gn(z

−1), (39)
Tdu(z

−1) = z−d(B(z−1) + dB(z−1))Gd(z
−1), (40)

Tr(z
−1) = z−d(B(z−1) + dB(z−1))Gr(z

−1)

= z−d(B(z−1) + dB(z−1))Ud(z
−1)R(z−1). (41)

Theorem 1: If polynomials Un(z
−1) and Ud(z

−1) are
selected to satisfy the conditions:

1 Ud(z
−1) is stable

2 at k → ∞, Gd(z
−1) is 0, that is,

Gd(z
−1)|z=1 = 0, (42)

then the effects of disturbance du(k) and parameter
deviation dA(z−1) in the closed-loop system (37) at
steady state are,

Tdu(z
−1)du(k) → 0 at k → ∞, (43)

Gd(z
−1)dA(z−1) → 0 at k → ∞. (44)

That is, in the closed-loop system (37), the effects of
disturbance du(k) and parameter deviation dA(z−1) at
steady state are suppressed.

Proof: From condition (42) and using equation (40),
equations (43) and (44) hold.

Theorem 2: If polynomials Un(z
−1) and Ud(z

−1) are
selected to satisfy the conditions:

1 Ud(z
−1) is stable

2 at k → ∞, Gn(z
−1) is 0, that is,

Gn(z
−1)|z=1 = 0, (45)

then the effect of disturbance dy(k) in equation (37)
at steady state is,

Tdy(z
−1)dy(k) → 0 at k → ∞. (46)
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That is, the effect of disturbance dy(k) at steady state is
suppressed. And when dA(z−1) = 0 and du(k) = 0, the
effect of parameter deviation dB(z−1) in equation (37) at
steady state is

lim
k→∞

(
y(k)

r(k)
|dB ̸=0 −

y(k)

r(k)
|dB=0

)
=

z−dGr(z
−1)dB(z−1)

Ty(z−1)

∣∣∣∣
z=1.

(47)

That is, if z−dGr(z
−1)/Ty(z

−1) at z = 1 is small, then
the effect caused by parameter deviation dB(z−1) is small
at steady state.

Proof: From condition (45) and using equation (39),
equation (46) holds. Equation (47) is proved from
equations (37) and (45) by

lim
k→∞

y(k)

r(k)

∣∣∣∣
dB ̸=0

=
z−d(B(z−1) + dB(z−1))Gr(z

−1)

Ty(z−1) +Gn(z−1)z−ddB(z−1)

∣∣∣∣
z=1

=
z−d(B(z−1) + dB(z−1))Gr(z

−1)

Ty(z−1)

∣∣∣∣
z=1,

(48)

lim
k→∞

y(k)

r(k)

∣∣∣∣
dB=0

=
z−dB(z−1)Gr(z

−1)

Ty(z−1)

∣∣∣∣
z=1.

(49)

Remark: When there are no disturbances du(k) = 0 and
dy(k) = 0 and no parameter destinations dA(z−1) = 0 and
dB(z−1) = 0, then Ud(z

−1) in then numerator (41) and
Ud(z

−1) in denominator (38) in the closed-loop system
(37) are canceled and the closed-loop systems (37) shows
that responses from reference r(k) to output y(k) are
independent to parameters Un(z

−1) and Ud(z
−1). This

means that the extended controllers do not improve the
transient responses and is only useful in the steady
state. This is the reason that disturbances and parameter
deviations are supposed to be slowly changing. When a
change occurs, then the system goes in transient state and
if the next change comes quickly, then the system goes in
transient state again, before goes in steady state. That is,
if the changes occur quickly, then the system does not go
in steady state and the extended controller does not realise
its usefulness. This fact is confirmed by simulations in the
next section. To improve the transient responses is a future
work.

6 Simulations

Simulated plant is a model of a two degree of freedom
mechanical system. The system has two wheels connected
by a spring. It is derived by torque applied at the end of
another spring attached at the centre of the first wheel. This
torque τ is the control input u. The wheels are affected by
viscous friction and elastic forces from springs. The output
y to be controlled is the rotation angle θ2 of the second

wheel. The system is depicted in Figure 1. Symbols and
their values are listed in Table 1.

Figure 1 Mechanical system (see online version for colours)

Table 1 Symbols and their values

First wheel Second wheel

Rotation angle θ1 rad θ2 rad
Inertia moment J1 0.2 kgm2 J2 0.1 kgm2

Viscous friction d1 0.1 Nms/rad d2 0.21 Nms/rad
Spring constant k1 50 Nm/rad k2 40 Nm/rad

Equations of motions of the system are

J1θ̈1 = −d1θ̇1 − k1θ1 − k2(θ1 − θ2) + τ, (50)
J2θ̈2 = −d2θ̇2 + k2(θ1 − θ2). (51)

These equations are transformed into discrete-time systems
with sampling time 0.05 sec and the numerator of the
discrete-time system is approximated by two steps time
delay. The approximated discrete time system is

(A(z−1) + dA(z−1))y(k)

= z−d(B(z−1) + dB(z−1))(u(k) + du(k)), (52)
yo(k) = y(k) + dy(k), y = θ2, u = τ, (53)
A(z−1) = 1 + a1z

−1 + a2z
−2 + a3z

−3 + a4z
−4, (54)

B(z−1) = b0, d = 2, (55)

where du(k) and dy(k) are slowly changing disturbances.
Parameters a1 ∼ a4 and b0 are

a1 = −0.9870, a2 = 1.1111, a3 = −0.9321,

a4 = 0.8458, b0 = 0.0208. (56)

Figure 2 compares the impulse responses of the original
continues-time equations of motion (50) and (51) and the
approximated discrete-time system (52). The figure shows
the discrete-time system approximates the continuous-time
equations well. Also it shows the system oscillates hard.

The generalised output Φ(k + d) is defined by

P (z−1) = p0 + p1z
−1 + p2z

−2 + p3z
−3 + p4z

−4, (57)
P1(z

−1) = p0 + p1z
−1, P2(z

−1) = p2 + p3z
−1 + p4z

−2,

Q(z−1) = q0, Q2(z
−1) = 0, R(z−1) = r0 + r1z

−1. (58)
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The coefficients of these polynomials are set by

p0 = 1, p1 = −1.5, p2 = 0.8375, p3 = −0.2062,

p4 = 0.0189, q0 = 0, r0 = 1, r1 = −0.8498, (59)

so that the poles of the closed-loop system are stable and

Poles: 0.3, 0.35, 0.4, 0.45. (60)

And r0 and r1 are selected so that the closed loop steady
state gain is 1.

Figure 2 Impulse responses of continuous-time equation of
motion and approximating discrete-time system
(see online version for colours)

In simulations, reference input r(k) is a rectangular wave
with period 200 steps and amplitude 1.0 and is shown in
Figure 3.

Figure 3 Reference input

Disturbances and plant parameter changes are step-wise and
ramp-wise and are shown in Table 2, Figures 4 and 5.

Table 2 Disturbances and parameter deviations

Disturbance Amplitude Start End Figure

Step to y(k) - 0∼1.0 100 350 Figure 4
Step to u(k) - 0∼1.0 50 300 Figure 4
Ramp to y(k) - –3.9∼0 50 330 Figure 4
Ramp to u(k) - 0∼3.9 30 310 Figure 4

Parameter Nominal Deviation Start End Figure

Step a1 –0.987 –0.987 × 0.1 20 250 Figure 5
Step a2 1.1111 1.1111 × 0.1 150 350 Figure 5
Step b0 0.0208 0.0208 × 0.1 20 300 Figure 5
Ramp a1 –0.987 –0.987 × 0.2 70 350 Figure 5
Ramp a2 1.1111 1.1111 × 0.2 90 370 Figure 5
Ramp b0 0.0208 0.0208 × 0.2 110 390 Figure 5

Simulations are conducted in eight cases. Details are shown
Table 3. In simulations #2 and #6, polynomials Un(z

−1)

and Ud(z
−1) are selected to satisfy condition (42) and in

simulations #4 and #8, to satisfy (45).

Figure 4 Disturbances (see online version for colours)

Figure 5 Parameters a1, a2 and b0 (see online version
for colours)

Table 3 Simulation cases

# Controller Un(z
−1) Disturbance Para. Figureand Un(z

−1) devai.

#1 Non- Un = 0 Step to Step Figure 6
extended Ud = 1 u(k) a1

#2 Extended Un = 9.612 and
Ud = 1− 0.8z−1 a2

#3 Non- Un = 0 Step to Step Figure 7
extended Ud = 1 y(k) b0

#4 Extended Un = 16.946

Ud = 1− 0.5z−1

#5 Non- Un = 0 Ramp Ramp Figure 8
extended Ud = 1 to u(k) a1

#6 Extended Un = 9.612 and
Ud = 1− 0.8z−1 a2

#7 Non- Un = 0 Ramp Ramp Figure 9
extended Ud = 1 to y(k) b0

#8 Extended Un = 16.946

Ud = 1− 0.5z−1
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In Figures 6∼9 show that non-extended controller does
not follow the given reference under the disturbance and
parameter changes, but the extended controllers suppress
the offsets at steady state.

Figure 6 Outputs of simulation #1 and #2 with step
disturbance to u(k) and parameter step deviations
of a1 and a2 (see online version for colours)

Figure 7 Outputs of simulation #3 and #4 with step
disturbance to y(k) and parameter step deviation
of b0 (see online version for colours)

Remark: In simulations #2 and #4, different parameters of
Un(z

−1) and Ud(z
−1) are used. This means for different

type of disturbances and parameter changes, different values
of parameters in the extended controller are required. To
make effective for different types by using single value in
the controller is remains a future work.

7 Conclusions

This paper proposed an extended controller to suppress
slowly changing disturbances such as friction, backlash or
caused by changes of payload in mechanical systems and
parameter deviations caused by aged deterioration or parts
replacement in steady state for high precise positioning
control. The extended controller is obtained by applying

Youla-Kucela generalised stabilising controller. Conditions
for suppression of effects of disturbances and parameter
changes in steady state are derived. The suppression
is attained by selecting the parameters in the extended
controller satisfying the conditions.

Figure 8 Outputs of simulation #5 and #6 with ramp
disturbance to u(k) and parameter ramp deviations
of a1 and a2 (see online version for colours)

Figure 9 Outputs of simulation #7 and #8 with ramp
disturbance to y(k) and parameter ramp deviation
of b0 (see online version for colours)

For suppression of different disturbances to input and
output and different parameter changes in transfer functions,
different values of parameters in the extended controller are
necessary. To make effective for different types by using
single value in the controller is remains as a future work.

The derived closed-loop system shows that responses
from reference r(k) to output y(k) are independent to
parameters of the extended controller. This means that the
extended controllers do not improve the transient responses.
This fact is confirmed by simulations. To improve the
transient responses is also a future work.

This paper considers slowly changing disturbances and
parameter changes because such cases occur frequently in
mechanical systems. Also, to consider randomly changing
disturbances or parameter deviations is important. To
consider such cases is also an open problem.
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This paper gives numerical simulations of using fourth
order mechanical model. To confirm the effectiveness of the
proposed controller by experiments is important and is a
future work.

Acknowlegements

This work was supported by Tateisi Science and
Technology Foundation and JSPS KAKENHI Grant
No. 22K04158.

References

Cheng, Q., Kouvaritakis, B. and Cannon, M. (2009) ‘A Youla
parameter approach to robust constrained linear model
predictive control’, Joint 48th IEEE CDC and 28th CCC,
Shanghai, China, 16–18 December, pp.2771–2776.

Clarke, D.W. and Gawthrop, P.J. (1979) ‘Self-tuning control’, Proc.
IEEE, Vol. 126, No. 6, pp.633–640.

Doyle, J.C., Francis, B.A. and Tannenbaum, A.R. (1990) Feedback
Control Theory, Macmillan Publishing Co., New York.

Fusco, G. and Russo, M. (2006) ‘Generalized minimum variance
implicit self-tuning nodal voltage regulation in power systems
with pole-assignment technique’, 2006 9th International
Conference on Control, Automation, Robotics and Vision.

Inoue, A. and Deng, M. (2013) ‘Design of poles of controller in
strongly stable GMVC using symbolic computation software’,
International Journal of Advanced Mechatronic Systems, Vol. 5,
No. 5, pp.345–351.

Inoue, A., Yanou, A. and Hirashima, Y. (1999) ‘A design of a
strongly stable self-tuning controller using coprime factorization
approach’, Proceedings of the 14th IFAC World Congress,
Vol. C, pp.211–216.

Inoue, A., Deng, M., Yanou, A., Henmi, T. and Yoshinaga, S.
(2018a) ‘Disturbance suppressing model predictive control using
state space approach’, Proceedings of the 2018 International
Conference on Advanced Mechatronic Systems, Zhengzhou,
China, 29 August–2 September, pp.273–278.

Inoue, A., Yanou, A., Deng, M. and Henmi, T. (2018b) ‘Disturbance
suppressing model predictive control using state observer’,
Technical Meeting on ‘Control’, IEEJ, Kouchi, Japan, in
Japanese, 21 September, No. CT-18-114, pp.23–28.

Inoue, A., Yanou, A., Deng, M. and Henmi, T. (2018c)
‘Disturbance suppressing model predictive control using state
space approach’, IEEJ Society C (Electronics, Information
and Systems) Annual Conference, Sapporo, in Japanese, 5
September, No. TC17-6, pp.622–627.

Inoue, A., Deng, M., Sato, T. and Yanou, A. (2021) ‘An extended
generalized minimum variance control using a full-order
observer equivalent to the controller based on polynomials’,
Proceedings of the 2021 International Conference on Advanced
Mechatronic Systems, 9–12 December, pp.220–225.

Inoue, A., Henmi, T., Masuda, S. and Sato, T. (2022) ‘A generalized
minimum variance controller based on a modified full-order
observer equivalent to polynomial approach’, IEEJ Transactions
on Electronics, Information and Systems, in Japanese, Vol. 142,
No. 5.

Kouvaritakis, B., Rossiter, J.A. and Chang, A.O.T. (1992) ‘Stable
generalized predictive control: an algorithm with guaranteed
stability’, Control Theory and Applications, IEE Proceedings,
Vol. 139, No. 4, pp.349–362.

Laurinda, L.N.R., Coelho, A.A.R., Otacilio, M.A., Campos, J.C.T.
and Romulo, N.A. (2007) ‘Current control of switched
reluctance motor based on generalized minimum variance
controller’, 2007 American Control Conference.

Ramos, M.A.P., Marquez, E.Q-M. and del Busto, R.F. (2004)
‘Generalized minimum variance with pole assignment controller
modified for practical applications’, Proceedings of the 2004
IEEE International Conference on Control Applications, Vol. 2.

Vidyasagar, M. (1985) Control System Synthesis: A Factorization
Approach, The MIT Press, Cambridge, MA, USA.


