Artificial neural network based adaptive control for plug-in hybrid electric vehicles Online publication date: Mon, 03-Jun-2019
by Kavya P. Divakarla; Sanjaka G. Wirasingha; Ali Emadi; Saiedeh Razavi
International Journal of Electric and Hybrid Vehicles (IJEHV), Vol. 11, No. 2, 2019
Abstract: Plug-in hybrid electric vehicles (PHEV) have become vital for oil consumption reduction. They have not achieved their maximum potential due to control strategy limitations. Existing controllers are often tuned to achieve the best fuel economy for specific conditions. It is impractical to optimise a controller for every scenario. A control strategy for PHEVs using artificial neural networks (ANN) is presented. The advantages of implementing a controller using ANN include independence from drive cycle or user, precision and robustness, and updatable training set. Existing PHEV control strategies are used to model a base for city and highway driving. Simulation data was extracted to form an ANN training set, which was used to develop a new strategy that was better than existing ones. The controller was validated using different drive cycles. Furthermore, the sensitivity of ANN controllers is presented. The controller is also used to validate the charge depleting mode of PHEVs.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electric and Hybrid Vehicles (IJEHV):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com