Active vibration compensator on moving vessel by hydraulic parallel mechanism Online publication date: Tue, 25-Sep-2018
by Yutaka Tanaka
International Journal of Hydromechatronics (IJHM), Vol. 1, No. 3, 2018
Abstract: In the field of marine construction, traffic ships are used to board the floating structures. However, the position of a traffic ship can be fluctuated because of tidal waves, and workers face the risk of an accident such as falling into the water or a collision with the vessel. Due to such potential hazards, we focus our attention on the safety and workability of such ship fluctuations. In this study, an active vibration compensator with a Stewart platform has been proposed and developed. The platform is supported on the main hull by means of a six-degrees-of-freedom hydraulic parallel mechanism that absorbs the motion of the main hull in accordance with the control signal from an on-board computer and motion sensors. Results of the simulation models confirm the design of the motion range that is required for the actual active vibration compensation system. Trial results depict that 66%-84% of the heave, roll, and pitch motion of the main hull is absorbed.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydromechatronics (IJHM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com