An improved multi-instance multi-label learning algorithm based on representative instances selection and label correlations
by Chanjuan Liu; Tongtong Chen; Hailin Zou; Xinmiao Ding; Yuling Wang
International Journal of Grid and Utility Computing (IJGUC), Vol. 9, No. 3, 2018

Abstract: Multi-Instance Multi-Label Learning (MIML) has been successfully used in image and text classification problems. It is noteworthy that few of the previous studies consider the pattern-label relations. Inevitably, there are some useless instances in a bag which will reduce the accuracy of the annotation. In this paper we focus on this problem. Firstly, an instance selection method via joint l2,1-norms constraint is employed to eliminate the useless instances and select the representative instances by modelling the instance correlation. Then, bags are mapped to these representative instances. Finally, the classifier is trained by an optimisation algorithm based on label correlations. Experimental results on image data set, text data sets and bird song audio data set show that the proposed algorithm significantly improves the performance of MIML classifier compared with the state-of-the-art methods.

Online publication date: Fri, 10-Aug-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Grid and Utility Computing (IJGUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email