Energy and exergy analyses of a solar air heater with wire mesh-covered absorber plate
by Atilla G. Devecioğlu; Vedat Oruç; Zafer Tuncer
International Journal of Exergy (IJEX), Vol. 26, No. 1/2, 2018

Abstract: Thermodynamic analysis on a novel design of solar air heater (SAH) having absorber plate covered with copper wire mesh was presented in this study. The newly-designed collector was tested for various air flow rates and tilt angles of the collector. The study was carried out for mass flow rates of 0.030 kg/s and 0.055 kg/s as well as collector tilt angles of 25° and 35°. Thermal efficiency, thermo-hydraulic efficiency and exergetic efficiency were computed by using experimental data. The results indicated that temperature at the outlet of collector, useful heat amount and pressure loss through collector were increased for higher mass flow rate and smaller collector tilt angle. Thermal efficiency of collectors was in the range of 34-82%, thermo-hydraulic efficiency was 25-66% and exergetic efficiency was 3.70-9.65% depending on the studied case. It may be suggested that greater mass flow rate and the lower tilt angle can lead to remarkable improvements in thermal and exergetic efficiencies of SAH with wire mesh on its absorber plate.

Online publication date: Sat, 23-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email