High strain rate compressive behaviour of human heart
by Khyati Verma; Sudipto Mukherjee; Piyush Gaur; Anoop Chawla; Rajesh Malhotra; Sanjeev Lalwani
International Journal of Experimental and Computational Biomechanics (IJECB), Vol. 4, No. 2/3, 2018

Abstract: Thoracic injuries incurred during crashes constitute a significant portion of all fatal and non-fatal injuries. Finite element human body models are used to understand the injury mechanisms to critical organs like the heart for improving crash safety. Major insight can be gained into its injury mechanisms by studying its compressive behaviour at strain rates seen in impact (up to 300/s). This study reports a total of 20 compression tests performed on heart tissues at strain rates ranging from 0.001/s to 200/s. Green strain was calculated from displacements which were obtained from analysis of high speed video recordings. Stresses were calculated from the measured force and initial cross-sectional area. The study showed that the response of heart tissue was non-linear and strain rate dependent. The elastic modulus also varied with strain with values ranging from 1.79e-3 MPa to 3.34 MPa at compressive strain of 15% to 46%.

Online publication date: Tue, 12-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Experimental and Computational Biomechanics (IJECB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com