Twitting bad rumours - the grexit case Online publication date: Tue, 03-Apr-2018
by Dimitrios Kydros
International Journal of Web Based Communities (IJWBC), Vol. 14, No. 1, 2018
Abstract: In this paper, we use methods from social network analysis to investigate patterns in data regarding the spreading of rumours regarding serious economic situations. More specifically, we use data acquired from Twitter during a period of time regarding keyword grexit. We then investigate a number of parameters regarding these data, such as their volume over time and their time relevance according to news feeds. We proceed by using methods from social network analysis (SNA) in order to create networks of tweets. These networks are comprised of persons or institutions that circulated globally our keyword of interest. The networks are then analysed according to well established methods and metrics from SNA. A certain approach tries to distinguish twitters from Greece and all other countries, when possible. Nodes are also clustered in communities, followed by another discussion on the way they interact and/or influence each other. Finally, we try to create a second class of network, regarding the semantics of the tweets' content. Again, an SNA type analysis is applied in these semantic networks.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Web Based Communities (IJWBC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com