Terminal sliding mode control-based MPPT for a photovoltaic system with uncertainties
by Wajdi Saad; Anis Sellami; Germain Garcia
International Journal of Modelling, Identification and Control (IJMIC), Vol. 29, No. 2, 2018

Abstract: Over the past few decades, the world demand for energy has risen steadily, forcing the world communities to look for alternative sources. Photovoltaic (PV) is seen as the most appropriate solution for this demand. In this context, this paper presents a robust terminal sliding mode control (RTSMC) method for maximum power tracking of stand-alone PV systems. The design method provides good robustness properties in the face of the system uncertainties and change of environment conditions. Starting from the mathematical dependence between the open-circuit voltage (Voc) and the optimal operating voltage (Vop), an MPPT design method is given. To eliminate the tracking voltage error, a RTSMC method is introduced thereafter. A pulse width modulator (PWM) is used to maintain the switching frequency constant. Compared to the P&O algorithm, the proposed methodology reduces the oscillations around the maximum power point (MPP) and provides better performance proprieties. Also, the simulations results prove the robustness qualities of the TSMC-MPPT design method.

Online publication date: Mon, 19-Mar-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com