Evaluation of various feature sets and feature selection towards automatic recognition of bird species Online publication date: Wed, 29-Nov-2017
by Arti V. Bang; Priti P. Rege
International Journal of Computer Applications in Technology (IJCAT), Vol. 56, No. 3, 2017
Abstract: It is necessary to develop efficient methods for monitoring and recognising bird species that will help in evaluating the biodiversity of a region. In this paper we present techniques for automatic recognition of bird species based on audio recordings of their sounds. In this work, various audio features like descriptive features, wavelet packet decomposition-based features and perceptual features like Mel-frequency cepstral coefficients, perceptual linear prediction, and human factor cepstral coefficients are evaluated. Combination of these feature sets has also been evaluated. Classification of ten bird species is carried out using Gaussian Mixture Modelling (GMM) and Support Vector Machines (SVMs). When a number of features are extracted, the feature vector may contain redundancy. Redundant features may either degrade the performance of the system or add no value to the system. For feature subset selection, this work implements a technique based on singular value decomposition and QR decomposition using column pivoting.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com