Hybrid framework using data mining techniques for early detection and prevention of oral cancer
by Neha Sharma; Hari Om
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 9, No. 5/6, 2017

Abstract: This paper presents the usage of classification and association data mining techniques for early detection and prevention of oral cancer. The indigenous dataset of 1,025 patients who visited a tertiary care centre during 2004 to 2009 was used for the research. Ten classification data mining models are designed using varied types of data mining techniques like regression analysis, classification trees and neural networks. Regression analysis models are linear regression model and logistic regression model; classification tree models are decision tree model, decision tree forest model and TreeBoost model and artificial neural networks are multilayer perceptron model, radial basis function model, group method of data handling model, cascade correlation model and probabilistic - general regression neural network model. Association rules are generated using apriori algorithm. The classification models and association rules are evaluated using various estimation parameters. Finally, a hybrid oral cancer management system is designed using the classification model and the association rules.

Online publication date: Mon, 27-Nov-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com