Enhanced grey wolf optimisation algorithm for constrained optimisation problems
by Himani Joshi; Sankalap Arora
International Journal of Swarm Intelligence (IJSI), Vol. 3, No. 2/3, 2017

Abstract: Grey wolf optimiser (GWO) is a recent, fast and easy-to-implement, nature inspired meta-heuristic optimisation algorithm that focuses on social behaviour of grey wolves. GWO algorithm is prominent in terms of finding global optima without getting trapped in premature convergence. In order to find a fast convergent behaviour of GWO, an enhanced grey wolf optimisation (EGWO) algorithm is proposed in this paper. Basically, GWO is modified in two ways in this study, first, to improve exploitation capability of GWO, the hunting mechanism makes the best use of the global best solution, i.e., alpha and secondly, a random parameter of existing GWO algorithm is emended in order to produce promising results compared to state-of-the-art algorithms. To validate the effectiveness of proposed EGWO algorithm, penalty function is consolidated and diverse experiments are executed on different constrained benchmark functions of different complexities and characteristics. Further, a classical engineering design problem (pressure vessel) is solved using the proposed algorithm. The performance evaluation of proposed EGWO algorithm along with other standard meta-heuristic optimisation algorithms proved that the proposed EGWO algorithm to be a competitive algorithm in the field of nature inspired meta-heuristic optimisation algorithms.

Online publication date: Mon, 06-Nov-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Swarm Intelligence (IJSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com