An efficient hybrid PC-SIFT-based feature extraction technique for face recognition Online publication date: Wed, 01-Nov-2017
by Deepti Ahlawat; Vijay Nehra
International Journal of Signal and Imaging Systems Engineering (IJSISE), Vol. 10, No. 5, 2017
Abstract: In this investigation, an efficient hybrid approach involving phase congruency (PC) and shift invariant feature transform (SIFT) for face recognition is presented. The present study exploits the advantages of PC and SIFT together for the purpose of efficient feature extraction for the facial images. The effectiveness of the present work is analysed and compared using other classifiers, i.e. K-means and self-organizing map. The results of this study demonstrate that phase congruency - shift invariant feature transform is robust to expression variations and shows better performance than other comparative methods and achieves good recognition accuracy. Studies are conducted on Japanese female facial expression and Yale databases. The proposed technique has been compared with the existing techniques, and from the experiments, it is observed that the results of the proposed technique are better than the existing techniques.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Signal and Imaging Systems Engineering (IJSISE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com