Parametric analysis of wear behaviour on fused deposition modelling build parts Online publication date: Wed, 07-Jun-2017
by Swayam Bikash Mishra; Rashmi Pattnaik; Siba Sankar Mahapatra
International Journal of Productivity and Quality Management (IJPQM), Vol. 21, No. 3, 2017
Abstract: Fused deposition modelling (FDM) is one of the proficient technologies among all rapid prototyping (RP) processes due to its capability to build durable end-use parts with reasonable mechanical strength. FDM process has the ability to develop 3D complex geometry accurately with less time and material waste as compared to other RP processes. However, mechanical wear unfavourably affects the durability and lifespan of the FDM build part when used as an end-use part. It has been observed that few important FDM process parameters significantly determine the mechanical strength, wear resistance and surface roughness of build parts. Since wear is an important phenomenon influencing functionality of a part, effect of six FDM build parameters viz. contour number, layer thickness, raster width, part orientation, raster angle and air gap on sliding wear of the specimen is experimentally investigated in this research work. Using analysis of variance (ANOVA), effect of each process parameter on wear of the build specimen is analysed. From the scanning electron microscope (SEM) images, wear surfaces and internal structures of the specimens are evaluated. Finally, a model based on least square support vector machine (LSSVM) technique is proposed to predict the wear performance of the FDM build parts.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Productivity and Quality Management (IJPQM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com