Adaptive combination methods of autoregressive parameters for epileptic EEG signals classification
by Boukari Nassim
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 22, No. 1, 2016

Abstract: Epilepsy, one of the most common neurological diseases, affects over 50 million people worldwide. Epilepsy can have a broad spectrum of debilitating medical and social consequences. This paper illustrates the use of adaptive combination autoregressive parameters for the feature extraction. The multilayer perceptron neural network is selected for the classification of electroencephalogram signals (EEG). Five types of EEG signals (Normal (A, B), Interictal (C, D), and Ictal (E) from Bonn University) were classified with the accuracy of 97.66% by the adaptive combination autoregressive parameters.

Online publication date: Thu, 08-Sep-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email