Title: Adaptive combination methods of autoregressive parameters for epileptic EEG signals classification

Authors: Boukari Nassim

Addresses: Department of Electrical and Electronics Engineering, Faculty of Engineering, Annaba University, Annaba 23000, Algeria

Abstract: Epilepsy, one of the most common neurological diseases, affects over 50 million people worldwide. Epilepsy can have a broad spectrum of debilitating medical and social consequences. This paper illustrates the use of adaptive combination autoregressive parameters for the feature extraction. The multilayer perceptron neural network is selected for the classification of electroencephalogram signals (EEG). Five types of EEG signals (Normal (A, B), Interictal (C, D), and Ictal (E) from Bonn University) were classified with the accuracy of 97.66% by the adaptive combination autoregressive parameters.

Keywords: neural networks; electroencephalograms; EEG signals; signal classification; autoregressive coefficients; adaptive weights combination; epileptics; epilepsy; feature extraction.

DOI: 10.1504/IJBET.2016.078989

International Journal of Biomedical Engineering and Technology, 2016 Vol.22 No.1, pp.47 - 57

Received: 26 Oct 2015
Accepted: 22 Dec 2015

Published online: 05 Sep 2016 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article