Improving map reduce task scheduling and micro-partitioning mechanism for mobile cloud multimedia services
by S. Saravanan; V. Venkatachalam
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 8, No. 2, 2016

Abstract: Over the several decades, there is a massive improvement in the computer technology which leads to infinite number of resources in all over the world. Many computing devices have to generate data that comes from various domains. In order to reduce the time complexity and the storage space of data, a novel technique namely map reduce programming model has been proposed to divide the workload among computers in a network to enhance the performance. To rectify the challenging issue of uneven data distribution, and also to enhance the process of load balancing along with memory consumption of computer, data sampling is highly preferred. To enhance the accuracy in scheduling, an innovative method called map reduce task scheduling algorithm is proposed for job deadline constraints. This algorithm classifies the nodes into several levels in heterogeneous clusters. Under this algorithm, a novel data distribution model has been elucidated in which it distributes data according to the node's capacity level respectively.

Online publication date: Fri, 01-Apr-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email