Prediction of critical thrust force for exit-ply delamination during drilling composite laminates: thermo-mechanical analysis
by Jamel Saoudi; Redouane Zitoune; Suhasini Gururaja; Salah Mezlini; Akshay Amaranath Hajjaji
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 18, No. 1/2, 2016

Abstract: Drilling damage, such as delamination at the hole exit, is known to adversely affect the load carrying capability of a structure resulting in reduced endurance limits and overall reduction in structural integrity. In this context, the present work studies the influence of temperature of machining on the critical thrust force responsible for delamiantion at the hole exit. An analytical model considering thermo-elastic field equations has been established with the aim of predicting the critical thrust force. The validation of this model has been conducted at room temperature via punching tests carried out on carbon fibre epoxy multi-directional composite laminates. Some difference in predictions exists which are mainly attributed to the variability in ply thicknesses due to the manufacturing process. Such an analysis underscores the need to explicitly account for machining temperature effects on machining damage characterisation.

Online publication date: Wed, 23-Mar-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email