Principal component analysis in medical image processing: a study
by Dibyadeep Nandi; Amira S. Ashour; Sourav Samanta; Sayan Chakraborty; Mohammed A.M. Salem; Nilanjan Dey
International Journal of Image Mining (IJIM), Vol. 1, No. 1, 2015

Abstract: Principal component analysis (PCA) is a mathematical procedure which uses sophisticated mathematical principles to transform a number of correlated variables into a smaller number of variables called principal components. In PCA, the information contained in a set of data is stored with reduced dimensions based on the integral projection of the dataset onto a subspace generated by a system of orthogonal axes. The reduced dimensions computational content is selected so that the significant data characteristics are identified with little information loss. Such a reduction is an advantage in several fields as for image compression, data representation, etc. It can also be widely used for feature extraction, image fusion, image compression, image segmentation, image registration, de-noising, etc. This paper presents a survey of the applications of PCA in the field of medical image processing. In this study, various medical image application-based PCA results are exhibited to prove its efficiency.

Online publication date: Wed, 24-Jun-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Image Mining (IJIM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email