Prediction of heating parameters based on support vector machine Online publication date: Thu, 14-May-2015
by Wang Meiping; Tian Qi
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 8, No. 3, 2015
Abstract: Considering the questions of complex non-linearity, large thermal inertia, retardance of a district heating system, it is very difficult to establish accurate mathematical models of heating parameters prediction for the heating system. Correlation analysis of influence factors is used to obtain the major factors influencing heating parameters through analysing operational data of a heating system; these factors serve as input parameters of the predicting model. This paper describes a prediction method that combines Support Vector Machine (SVM) with neural network. The method creates a network structure between heating parameters and its influence factors. Evaluation indexes of relative error and correlation coefficients are given to analyse the feasibility of the method within the scope of engineering applications through using the network model to regress and predict the heating parameters and compare them with testing data. It turned out that the prediction technique provides powerful guidance for operation of the district heating system.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com