A self-organising cooperative hunting by robotic swarm based on particle swarm optimisation localisation
by Zebing Wang; Li Qin; Wei Yang
International Journal of Bio-Inspired Computation (IJBIC), Vol. 7, No. 1, 2015

Abstract: A novel self-organising approach to cooperative hunting by robotic swarm is put forward. Each individual can simply detect the direction angle of moving target. By using particle swarm optimisation (PSO), locating target can be realised through the individual's local interaction. Collective hunting behaviour emerged when human object moved through the detection area. Simulations and experiments demonstrate the feasibility and effectiveness of the proposed approach to cooperative hunting by swarm robotic systems.

Online publication date: Thu, 12-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com