Induction of fuzzy decision trees and its refinement using gradient projected-neuro-fuzzy decision tree Online publication date: Sat, 24-Jan-2015
by Swathi Jamjala Narayanan; Rajen B. Bhatt; Ilango Paramasivam; M. Khalid; B.K. Tripathy
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 6, No. 4, 2014
Abstract: Fuzzy decision tree (FDT) induction is a powerful methodology to extract human interpretable classification rules. Due to the greedy nature of FDT, there is a chance of FDT resulting in poor classification accuracy. To improve the accuracy of FDT, Bhatt and Gopal (2006) have proposed a back propagation strategy, where the interpretability of derived fuzzy rules is affected, as the certainty factor of the rules does not lie within the theoretical bounds of 0 and 1. To retain the human interpretability of fuzzy rules, and to make rules consistent with fuzzy set theory, we restrict the values of certainty factor to lie within theoretical bounds using the concept of gradient projection over neuro fuzzy decision tree and the model is named as Gradient Projected-Neuro-Fuzzy Decision Tree (GP-N-FDT). Here, the parameters of FDT developed using Fuzzy ID3 algorithm are fine tuned using GP-N-FDT strategy to improve the classification accuracy.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com