From ranking fuzzy numbers to solving fuzzy linear programming: a comprehensive review Online publication date: Sat, 27-Sep-2014
by Thanh Nguyen
International Journal of Computing Science and Mathematics (IJCSM), Vol. 5, No. 3, 2014
Abstract: Solving fuzzy linear programming (FLP) requires the employment of a consistent ranking of fuzzy numbers. Ineffective fuzzy number ranking would lead to a flawed and erroneous solving approach. This paper presents a comprehensive and extensive review on fuzzy number ranking methods. Ranking techniques are categorised into six classes based on their characteristics. They include centroid methods, distance methods, area methods, lexicographical methods, methods based on decision maker's viewpoint, and methods based on left and right spreads. A survey on solving approaches to FLP is also reported. We then point out errors in several existing methods that are relevant to the ranking of fuzzy numbers and thence suggest an effective method to solve FLP. Consequently, FLP problems are converted into non-fuzzy single (or multiple) objective linear programming based on a consistent centroid-based ranking of fuzzy numbers. Solutions of FLP are then obtained by solving corresponding crisp single (or multiple) objective programming problems by conventional methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com