Investigations into micro-orthogonal cutting and material strengthening
by Y.V. Srinivasa; M.S. Shunmugam
International Journal of Manufacturing Research (IJMR), Vol. 8, No. 4, 2013

Abstract: When a scale of metal cutting process reduces to micrometer range, mechanics of material removal are affected by various factors such as workpiece material, cutting tool geometry and cutting conditions. A suitable model of constitutive behaviour of the material is needed to represent properties of the work material at the conditions existing during chip formation. In this paper, a material model based on theory of strain gradient plasticity is proposed for material strengthening in micro cutting, taking into account size effect in micro cutting with a tool having an edge radius. The proposed model effectively combines strain gradient plasticity and basic mechanics of orthogonal cutting. The material model thus developed is validated using results obtained from micro-orthogonal cutting experiments on mild steel (AISI 1019). Micro-orthogonal experiments with varying uncut chip thickness are also carried out to fine-tune the material model and investigate the mechanics of micro cutting considering the minimum uncut chip thickness effect. The results are encouraging and shear strength is predicted with an average absolute error of 11.8%. FE simulations carried out with flow stress obtained from Johnson-Cook relation yield cutting forces that follow the trend in the experimentally obtained force signals, but they are unable to capture the strain gradient and ploughing effects. [Received 4 July 2012; Revised 2 January 2013; Accepted 27 April 2013]

Online publication date: Wed, 29-Jan-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Research (IJMR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email