A near-optimal rule-based energy management strategy for medium duty hybrid truck
by Riccardo Biasini; Simona Onori; Giorgio Rizzoni
International Journal of Powertrains (IJPT), Vol. 2, No. 2/3, 2013

Abstract: This paper covers the design and implementation of a rule-based energy management strategy for a medium duty hybrid truck. In this paper, a procedure for the design of a near-optimal energy management strategy is presented. The procedure utilises the dynamic programming (DP) algorithm to find the optimal control strategy that minimises the fuel consumption over a given driving mission. Through the analysis of the behaviour of DP control actions, near-optimal rules are extracted and tuned to design a rule-based strategy for charge sustaining operation which, unlike DP control signals, is implementable on-board of the vehicle. Drivability metrics such as frequent clutching and engine on/off behaviour are also included in the control design based on the implementation of the DP under different drivability scenarios. The performance of the proposed energy management control strategy is studied by using a proposed longitudinal vehicle model of a pre-transmission parallel medium duty hybrid truck with a clutch. The proposed near-optimal rule-based strategy, benchmarked against the optimal DP solution, shows performance within 3% of the global optimal one.

Online publication date: Sat, 19-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Powertrains (IJPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com