Semi-supervised and compound classification of network traffic Online publication date: Thu, 25-Apr-2013
by Jun Zhang; Chao Chen; Yang Xiang; Wanlei Zhou
International Journal of Security and Networks (IJSN), Vol. 7, No. 4, 2012
Abstract: This paper presents a new semi-supervised method to effectively improve traffic classification performance when very few supervised training data are available. Existing semi-supervised methods label a large proportion of testing flows as unknown flows due to limited supervised information, which severely affects the classification performance. To address this problem, we propose to incorporate flow correlation into both training and testing stages. At the training stage, we make use of flow correlation to extend the supervised data set by automatically labelling unlabelled flows according to their correlation to the pre-labelled flows. Consequently, a traffic classifier achieves excellent performance because of the enhanced training data set. At the testing stage, the correlated flows are identified and classified jointly by combining their individual predictions, so as to further boost the classification accuracy. The empirical study on the real-world network traffic shows that the proposed method significantly outperforms the state-of-the-art flow statistical feature based classification methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Security and Networks (IJSN):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com