Crystallographic texture optimisation in polycrystalline ferroelectric films for Random Access Memory applications
by Heather A. Murdoch, R. Edwin Garcia
International Journal of Materials and Product Technology (IJMPT), Vol. 35, No. 3/4, 2009

Abstract: The present paper analyses the effect of crystallographic texture on the electromechanical interactions of polycrystalline PZT films. These interactions are responsible for inducing local enhancements of the remnant polarisation. Built-in stresses and electric fields are responsible for asymmetries in the local shape of the hysteretic loop that are as large as 25% in the coercive field and 10% in the out-of-plane remnant polarisation. Simulations show two types of 180° domain walls are favoured: stress-free and mechanically tensile polarisation interfaces. For [001] fibre textured grains a texture of 37 MRDs (r = 0.3) will maximise the performance of individual memory units.

Online publication date: Sat, 23-May-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email