Study of flow characteristics in a ladle with top lance injection
by J. L. Xia, T. Ahokainen, L. Holappa
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 1, No. 4, 2001

Abstract: Two-phase flows in a model ladle agitated by top blowing lance injection are analysed using the CFX code. A Eulerian two-phase approach is used. Predictions show that different flow patterns exist with changing operational conditions (Q, dn, and hn/H). The gas-liquid plume spreads radially, gradually in most of the plume region and extensively near the free surface. For the cases considered, bubbles in the central plume accelerate up to their terminal rising velocity, then move at this rising velocity, and thereafter decelerate when they approach the free surface. A similar behaviour is demonstrated for the liquid rising velocity. The effect of the drag and lift force coefficients on flows are also examined. A large lift coefficient (CL> 0.15) should be utilised, and the drag coefficient for spherical cap shaped bubbles is preferred. Numerical results are compared with available experimental data, and an excellent agreement is achieved outside the gas-liquid plume, though a relatively large deviation is observed within the plume.

Online publication date: Fri, 04-Jul-2003

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email