A personalised recommendation of tourism routes based on rule-based reasoning Online publication date: Thu, 23-Jan-2025
by Qiang Wu; JiaHui Peng; DongMei Ge
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 16, No. 6, 2024
Abstract: In order to solve the problems of low accuracy, long time and low satisfaction of tourists existing in traditional methods, this paper proposes a personalised recommendation method of tourism routes based on rule-based reasoning. Firstly, the web crawlers is used to collect travel data and process the collected data dimensionless. Then, the rule reasoning method is used to build the personalised preference model of tourists, and the random gradient rise method is used to optimise the model. Finally, determine the constraints, take the personalised information of tourist routes, scenic spots and tourists as the input vector of the model, build the personalised recommendation model of tourist routes, and get the relevant recommendation results. The experimental results show that the maximum recommendation accuracy of this method is 96%, the recommendation time is always less than 51 ms, and the average tourist satisfaction is 9.70.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com