A separable convolutional neural network for vehicle type recognition Online publication date: Tue, 03-Sep-2024
by Baili Zhang; Yansu Wang
International Journal of Computing Science and Mathematics (IJCSM), Vol. 20, No. 2, 2024
Abstract: The traditional vehicle type recognition algorithm has a low image recognition rate for various vehicle types on diverse road conditions and is prone to being affected by shooting distance, light intensity, and weather. To address these problems, a new separate convolutional neural network structure was proposed to automatically classify the images of different vehicle types based on the deep learning TensorFlow framework and the classical GoogLeNet-based network model. Experimental results on the data sets of BIT-Vehicle and Cars-196 show that, compared with the traditional HOG_BP algorithm and convolutional neural network model, the decomposed convolutional neural network has a higher recognition rate for the same difficult vehicle images, and its average accuracy rate reaches 96.30%. In addition, the adjustment of hyperparameters in the network ensures that the parameters, such as weight and bias amount, are more efficient and reasonable when constantly updated.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com