Online and offline hybrid teaching data mining based on decision tree classification
by Yu Cao; Shu-Wen Chen; Hui-Sheng Zhu
International Journal of Continuing Engineering Education and Life-Long Learning (IJCEELL), Vol. 34, No. 5, 2024

Abstract: In order to overcome the problems of large mining errors and low classification accuracy of traditional teaching data mining methods, a hybrid online and offline teaching data mining method based on decision tree classification is proposed. First of all, the online and offline mixed teaching data is obtained with the help of crawler technology. Secondly, data repair method is adopted to ensure data consistency, and duplicate data values are determined by distance value to complete data pre-processing. Finally, according to the construction of the decision tree, determine the root entropy and leaf entropy of the mixed teaching data, create the root node, attribute list and class list of the mixed teaching data, and complete the online and offline mixed teaching data mining. The experimental results show that the proposed method can effectively reduce the error of data mining, with the error coefficient not exceeding 0.2, and improve the classification accuracy.

Online publication date: Mon, 02-Sep-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Continuing Engineering Education and Life-Long Learning (IJCEELL):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com