Loss assessment and experimentation of gallium nitride-based integrated charger for electric vehicles Online publication date: Wed, 24-Jul-2024
by Kundan Kumar
International Journal of Powertrains (IJPT), Vol. 13, No. 2, 2024
Abstract: The research on electric vehicles (EVs) and their charging infrastructure are advancing very fast and the adoption of EVs can reduce the burden of fossil fuels, results in a green and healthy environment. The compact sizing and design of an efficient charging system are the major concerns that can be addressed by implementing an onboard integrated charger. The integrated charger works in two modes: the first one is charging mode when the vehicle is in a stationary position while the second one is the propulsion mode in which the vehicle is in motion. In this work, an integrated charger is explored using gallium nitride (GaN)-based semiconductor devices for propulsion as well as charging modes. Further, a scaled-down prototype of 400-watt GaN-based integrated charger is tested for both modes. The various performance results and efficiency of the integrated charger are presented. It is observed that the efficiency of the GaN-based integrated charger is on an average of 4-5% higher than Si and 2-3% higher than SiC which shows the dominance of GaN.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Powertrains (IJPT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com