Multimodal music emotion recognition method based on multi-source data fusion Online publication date: Mon, 08-Jul-2024
by Bin Liu
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 16, No. 3, 2024
Abstract: Aiming at the problems of low recognition accuracy and long recognition time in traditional multimodal music emotion recognition methods, a multimodal music emotion recognition method based on multi-source data fusion is proposed. First, build a multimodal music emotion model, then use TF-IDF to extract lyric modal emotion features, and use Mel frequency cepstrum coefficient to extract audio modal emotion features. Then, after preprocessing the extracted multimodal features, fuse the two multi-source data features of lyric mode and audio mode, and finally calculate the probability distribution of a song in the emotional space according to the fusion results. The emotion category with the highest corresponding value is taken as the emotion category to which the music belongs, so as to achieve the purpose of emotion recognition of multimodal music. Simulation results show that the proposed method has higher accuracy and shorter recognition time for multimodal music emotion recognition.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com