A deep learning based automated phenotyping for identification of overuse of synthetic fertilisers in Amaranthus crop
by J. Dhakshayani; B. Surendiran; J. Jyothsna; A.S. Syed Shahul Hameed; Narendran Rajagopalan
International Journal of Computational Science and Engineering (IJCSE), Vol. 27, No. 4, 2024

Abstract: Amaranth (Amaranthus spp.) is a significant leafy vegetable and cereal crop with high nutrient benefits that is widely consumed worldwide. To maximise its yield, farmers massively rely upon synthetic fertilisers to enhance the quality of the crop. However, this obsessive usage of inorganic fertiliser leads to severe ecosystem damage. For agricultural and ecological sustainability, it is essential to comprehend the process underlying this environmental degradation. This paper analyses the effect of inorganic fertilisers on the growth and yield of Amaranthus. By identifying Amaranthus's productivity and adaptability in different chemically treated soil conditions and automatically phenotyping its traits using image-based deep learning models, this study aims to determine the overuse of synthetic fertilisers. A comparative evaluation of different state-of-art CNN models was carried out, and the experimental result proves that DenseNet-121 could be a more appropriate learning algorithm for the proposed system with 84% accuracy. It is believed that the proposed deep learning based automated phenotyping framework could greatly assist farmers in understanding the actual requirement of soil, thus avoiding the residual impact of fertiliser abuse in the environment.

Online publication date: Fri, 05-Jul-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com