Table tennis player expression recognition method based on Gabor multi directional feature fusion Online publication date: Sat, 18-May-2024
by Xingbo Zhou; Junmin Wang
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 16, No. 2, 2024
Abstract: In order to improve the recognition rate of table tennis players' expressions and reduce the recognition difference, this paper proposes an expression recognition method based on Gabor multi-directional feature fusion. After extracting multi-scale geometric features of facial expression image, the parameters of Gabor filter are optimised, multi-scale feature fusion and filtering are performed on the image, and block histogram features are extracted. The optimised multi-scale features are input into the generated confrontation network model to realise the recognition of table tennis players' expressions. Experimental results show that the maximum recognition rate of the method can reach 98.7%, and the minimum recognition difference is only 0.871. The feature results of the image in five scales and eight directions can be obtained, which shows that the method can accurately output the facial expression recognition results.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com