Low carbon design of automobile front-end structure based on Pareto mining
by Shuhua Li; Jing Bei; Zongyang Wu; Bofu Wu; Zhongwen Zhu
International Journal of Vehicle Design (IJVD), Vol. 95, No. 1/2, 2024

Abstract: In order to improve the energy saving and emission reduction effect of vehicle front-end structure, the entropy-weight technique for order preference by similarity to an ideal solution (EW-TOPSIS) method is proposed to mine the optimal solution in the non-dominated Pareto solution sets. The automobile front-end structure is designed by adopting the integrated optimisation design method with ZL205A aluminium alloy by using vacuum investment casting. A finite element model is established to construct a radial basis function (RBF) - response surface methodology (RSM) hybrid surrogate model with specific energy absorption and mass as the optimisation objectives, and a multi-objective optimisation is carried out jointly with a multi-island genetic algorithm (MIGA). The 148 Pareto solution sets are scored and ranked using the EW-TOPSIS method, and the optimal solutions are assessed for their life cycle. The results show that the optimised cast aluminium structure reduces the mass by 49.82%, improves the energy absorption by 37.70%, and reduces the energy consumption by 4776.674 MJ and greenhouse gas emissions (GHG) emission by 176.207 kg over the 300,000 km driving range.

Online publication date: Fri, 05-Apr-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com