Online consumer behaviour anomaly recognition method based on limit learning machine Online publication date: Wed, 15-Nov-2023
by Zheng Xie; Lianguang Mo
International Journal of Web Based Communities (IJWBC), Vol. 19, No. 4, 2023
Abstract: Aiming at the large identification error and long identification time in online consumer behaviour anomaly identification, an online consumer behaviour anomaly identification method based on limit learning machine is designed. The key factors affecting the characteristics of consumers' online consumption behaviour are determined, and the data characteristics are extracted by using classical TRA theory and decision tree. The similar feature data are determined by non-negative matrix decomposition method; the fused feature data are placed in two-dimensional space, and the noise points in the feature data are located by gradient matrix algorithm under Gaussian window. Determine the state of characteristic data, train the suspected abnormal behaviour data through the limit learning machine, randomly add weights and bias values in the training, output the results, and modify the results through the correction function to complete the anomaly identification. The results show that the accuracy error of the proposed method is about 0.8%.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Web Based Communities (IJWBC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com