Second-law analysis of heat and fluid flow in microscale geometries
by Mete Avci, Orhan Aydin
International Journal of Exergy (IJEX), Vol. 4, No. 3, 2007

Abstract: In this study, the second law analysis of thermodynamics is applied to two different microgeometries: microtube and microduct, between two parallel plates. Hydrodynamically and thermally fully developed flow with constant properties is examined. Microscale effects are included in the analysis in terms of the viscous dissipation, the velocity slip and temperature jump. Using the previously obtained velocity and temperature profiles, a parametric study is carried out to determine the combined effects of the Brinkman number, Br, and the Knudsen number, Kn, on the entropy generation. Entropy generation is shown to decrease with an increase in Kn while increasing Br results in increasing entropy generation.

Online publication date: Wed, 25-Apr-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email