Steady-state solution for discrete Oort-Hulst-Safronov coagulation equation Online publication date: Mon, 17-Apr-2023
by Sonali Kaushik; Rajesh Kumar
International Journal of Dynamical Systems and Differential Equations (IJDSDE), Vol. 13, No. 2, 2023
Abstract: The paper examines the steady-state behaviour of the Safronov-Dubovski coagulation equation for the kernel Vi,j = CV (iβ jγ + iγ jβ ) when 0 ≤ β ≤ γ ≤ 1, ( β + γ ) ∈ [0, 2] ∀ i, j ∈ ℕ, CV ∈ ℝ⁺. By assuming the boundedness of the second moment, the existence of a unique steady-state solution is established. Since, the model is non-linear and analytical solutions are not available for such cases, numerical simulations are performed to justify the theoretical findings. Four different test cases are considered by taking physically relevant kernels such as Vi,j = 2, (i + j), 8i1/2j1/2 and 2ij along with various initial conditions. The obtained results are reported in the form of graphs and tables.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Dynamical Systems and Differential Equations (IJDSDE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com