Recognition method of basketball players' throwing action based on image segmentation
by Cong Zhang; Miao Wang; Limin Zhou
International Journal of Biometrics (IJBM), Vol. 15, No. 2, 2023

Abstract: In order to solve the problems of low recognition accuracy and long recognition time in traditional basketball players' throwing action recognition methods, this paper proposes a new basketball players' throwing action recognition method based on image segmentation. The covariance matrix of noise data of basketball players' throwing action is constructed. The throwing action of basketball players is expressed by acceleration and angular velocity, and the acceleration vector of throwing action is obtained. The feature extraction of throwing action is completed by discrete Fourier transform algorithm. The image of basketball players' throwing action is segmented by threshold and edge, and the change features of throwing action are obtained by kernel function to complete the recognition of basketball players' throwing action. The experimental results show that the accuracy of the proposed method is about 98%, and the time cost is about 2.1 s.

Online publication date: Wed, 01-Mar-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biometrics (IJBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email