Machine learning-based iris liveness identification using fragmental energy of cosine transformed iris images Online publication date: Thu, 15-Dec-2022
by Smita Khade; Sudeep D. Thepade; Swati Ahirrao
International Journal of Biometrics (IJBM), Vol. 15, No. 1, 2023
Abstract: Iris biometric identification provides a contactless authentication preventing the spread of COVID-19 like diseases. These systems are made vulnerable and unsafe because of the spoofing attacks attempted with the help of contact lenses, video replays and print attacks. The paper proposes the iris liveness detection method to mitigate spoofing attacks, taking fragmental coefficients of cosine transformed iris image to be used as features. Seven variants of feature formation are considered in experimental validations of the proposed method, and the features are used to train eight assorted machine learning classifiers and ensembles for iris liveness identification. Recall, F-measure, precision and accuracy are used to evaluate performances of the projected iris liveness identification variants. The experimentation carried out on four standard datasets have shown better iris liveness identification by the fragmental coefficients of cosine transformed iris image with size 4 * 4 using random forest algorithm having 99.18% accuracy immediately followed by an ensemble of classifiers.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biometrics (IJBM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com